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ABSTRACT
During disasters, ensuring that resources are efficiently allocated to
appropriate locations is essential for minimizing adverse impacts
and saving lives. To this end, we present RADAR, a data-driven plat-
form that integrates multisource GIS feeds (USGS earthquake alerts,
Cal Fire wildfire perimeters) with facility and transportation data
to support proactive planning and real-time recommendations for
Emergency Operations Centers. RADAR uses policy-driven stable
matching to optimize routing and resource assignment for evacua-
tion planning and resource delivery. The aggregate model allocates
across short-term facilities (e.g., hospitals), and a fine-grained ex-
tension for long-term senior-care facilities personalizes allocation
using resident preferences, medical profiles, and social constraints.
RADAR adapts as conditions evolve by utilizing historical data, live
traffic, and changing facility status. We validated RADAR’s efficacy
in many disaster settings, including real events such as the Palisades
wildfire and tabletop drills (earthquake and water-contamination
scenarios) involving first responders.
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1 INTRODUCTION
Natural disasters such as wildfires, floods, and earthquakes are be-
coming increasingly frequent and severe, significantly impacting
communities worldwide. These disasters disrupt critical infrastruc-
ture, overwhelm healthcare/emergency systems, and incur sub-
stantial economic and social costs. Factors such as climate change,
population growth, and aging infrastructure exacerbate these chal-
lenges and complicating disaster response efforts [21, 29]. Efficient
disaster response involves multiple interconnected components: dis-
aster preparedness ahead of the event, rapid resource allocation and
communication coordination during the event, and post-disaster
recovery planning. Timely and effective decisions must integrate
diverse multimodal data (GIS imagery, weather data, human re-
ports, etc.) to create real-time situational awareness [49]. This is
used by decision-makers to rapidly assess infrastructure conditions
(e.g., transport), resource availability, and environmental hazards to
prioritize actions and allocate scarce resources optimally. Clearly,
inefficient allocations can delay relief efforts and exacerbates so-
cioeconomic disparities, often leaving vulnerable populations (e.g.
older adults) without adequate support and increasing long-term re-
covery costs [62]. The effectiveness of the response greatly depends
on inter-agency coordination and communication between stake-
holders such as Emergency Operations Centers (EOCs), healthcare
providers, government agencies, and the affected populations [35].

Older adults represent a notably vulnerable population due to
mobility limitations, chronic health conditions, cognitive challenges,
and specialized medical requirements – all leading to a reliance
on continuous care. During disasters, timely allocation of health-
care resources to this population is critical to mitigate the impact
of the disaster [29]. By 2034, the number of older adults in the
U.S. is projected to outnumber children, significantly increasing
healthcare demands and creating severe staffing shortages in senior
care facilities [39]. The complexity of caring for older adults dur-
ing disasters also extends beyond immediate health impacts; the
long-term impacts encompass psychological, social, and emotional
effects [41, 42]. Failure to address these multifaceted needs ade-
quately can lead to deterioration in chronic health conditions and
ultimately increase mortality rates. Disaster preparedness and re-
sponse in senior care facilities must involves customized strategies
that consider individual medical profiles, personal preferences, and
continuity of care, as traditional one-size-fits-all planning models
are ineffective for this population.
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From a geographic information systems (GIS) perspective, the
integration and analysis of spatio-temporal data plays a crucial
role in disaster response. Accurate real-time GIS data can improve
disaster prediction, streamline evacuation routes, and enhance the
coordination of emergency resources by identifying and visualizing
hazard zones, traffic disruptions, and demand hotspots dynami-
cally [14, 48, 49]. In addition, storing facility and hazard layers in
a spatially enabled PostgreSQL/PostGIS database improves high-
performance geospatial indexing (R-tree indices) and sub-second
nearest-neighbor queries [14]. By unifying vector feeds (roads, facil-
ity footprints) with live traffic streams and dynamic facility status
updates, we can enable ad hoc spatial joins and topology-aware
route planning that avoid impacted segments in real time.

Building on these spatial foundations, techniques such as AI-
driven predictive models, multi-objective optimization, and risk-
aware graph algorithms can further enhance disaster resilience.
Some approaches use risk-aware pathfinding methods that dynami-
cally update edge weights in response to evolving hazard and traffic
conditions [2, 50, 55, 64]. This allows both evacuees and emergency
vehicles to be routed via the safest and fastest paths as conditions
evolve. Likewise, emerging technologies such as the Internet of
Things (IoT), sensor networks, and pervasive computing systems
can significantly enhance real-time monitoring and resource man-
agement during disasters. IoT-enabled devices can continuously
collect and transmit critical data, providing detailed, granular in-
sights into rapidly changing conditions. Thus, there is a need for
methods that support situational awareness via the integration of
heterogeneous data streams from environmental sensors and smart
infrastructure [34]. In addition, incorporating fairness and ethics
considerations into the allocation process is also important, as they
guide equitable and transparent decision-making, especially under
conditions of resource scarcity and intense pressure, ensuring that
people receive appropriate care during emergencies [6, 30, 33, 51].

Recent efforts have highlighted the gaps in current emergency
planning and response practices. Through the CareDEX disaster
resilience effort [38], we conducted wildfire and earthquake drills,
as well as tabletop simulations with partner senior care facilities
to evaluate evacuation strategies. These exercises revealed that in
the aftermath of major disasters, hospitals and senior care facili-
ties often face massive surges in demand for beds, supplies, and
staffing, leading to adverse outcomes among vulnerable populations.
These findings evidence the need for a unified, spatially informed
allocation framework that can anticipate surges, pre-stage critical
resources, and coordinate evacuations in real-time.

To ensure seamless integration into operational workflows, we
co-designed our platform with key stakeholders, including the Or-
ange County Health Care Agency (OCHCA), ImageCat (hazard
analytics experts), and senior healthcare partners. These collab-
orations ensured that our platform aligns with existing disaster
resilience protocols. Based on these insights, we propose RADAR,
a data-driven platform designed to enhance disaster response by
providing actionable recommendations to EOCs. RADAR provides
aggregate decision support, suitable for short-term facilities (e.g.,
hospitals) and fine-grained allocation for personalized, resident-
level assignments in long-term care facilities, such as nursing homes
and assisted living facilities. Our key contributions include:

• A GIS-centric platform for disaster planning and mitigation,
coupling real-time hazard streams with organizational data
and policy-driven stable-matching optimization.
• Customizable resource allocationmodels: an aggregatemodel
for rapid decision-making, and a fine-grained model for per-
sonalized resident-level assignments.
• Integration of multi-source vector feeds, historical data, real-
time traffic, and facility status updates in a Spatial Decision
Support System (SDSS) for “what-if” scenario analysis.
• Comprehensive emulation-based scenario testing and real-
world drills demonstrating improvements in assignment and
routing efficiency while ensuring fairness.

Our paper is organized as follows. In §2, we discuss related work
and limitations. Our approach is discussed in §3 and the problem
is formulated in §4. The decision-making policies, including our
model, are described in §5. Then, §6 and §7 present our experimental
results, conclusions, and future work.

2 RELATEDWORK AND LIMITATIONS
Resource allocation has been extensively studied in various domains
such as education [40], economics [31], and transportation [14],
where the primary goal is to optimize efficiency by minimizing
delays and maximizing resource utilization. Resource scheduling
in computing environments, such as CPU and memory allocation
in operating systems and cloud platforms, relies on well-defined,
deterministic constraints, enabling high-throughput, low-latency
policies to be evaluated in closed-loop simulations [19, 28]. By
contrast, resource allocation in senior health care with human-
in-the-loop (HITL) introduces profound uncertainties: individual
compliance, variable mobility impairments, cognitive load, and
the need for continuity of medical care. Such HITL scenarios defy
the predictability of traditional resource schedulers and require
specialized protocols to ensure safety and dignity.

While traditional domains emphasize predictability and effi-
ciency, disaster-oriented health care resource allocation requires
fundamentally different approaches. Early efforts utilize mixed-
integer programming for multi-period scheduling under capac-
ity constraints [58] and heuristic or genetic algorithms for multi-
objective routing and facility assignment [50, 55]. However, system-
atic reviews call for stronger, data-driven frameworks to overcome
inconsistent evidence quality [52]. Recently, large language models
have been explored to support decision-making, but their reliability
and autonomy in high-stakes disaster contexts remains challeng-
ing, e.g., due to hallucinations [57, 61]. Likewise, equity-driven
approaches use multi-criteria decision analysis such as Analytic
Hierarchy Process (AHP) and Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) to rank candidate sites by
accessibility, capacity, and hazard exposure [1, 30]. However, they
struggle to ingest real-time data streams, and static vulnerability
indices often fail to reflect rapidly evolving disaster conditions [21].

Geospatial technologies have also become essential to opera-
tionalizing decision-making strategies in disasters. These methods
offer tools to map, analyze, and act on complex spatial relationships
in real time. This forms the backbone of spatial decision support
by enabling integrated, multilayered analyses. Here, centralized
PostGIS databases deliver high-performance geospatial indexing,
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ad-hoc spatial joins, and topology-aware routing that dynamically
avoids impacted road segments [14]. However, surveys of GIS in dis-
aster response highlight various challenges in real-time data fusion,
and some work points to AI-driven predictive modeling for hazard
progression and traffic disruptions [59]. In addition, probabilistic
flood-risk models using multi-criteria GIS frameworks show ur-
ban vulnerability mapping, while pre-disaster evacuation network
design under equilibrium flow conditions informs robust route con-
figuration before congestion occurs [1, 32]. A recent approach has
also enabled predictive risk scoring of nursing homes, showing
how spatial layers of infrastructure, population density, and hazard
exposure can guide pre-positioning of medical resources [46].

To utilize spatial insights in dynamic settings, Spatial Decision
Support Systems (SDSS) extend GIS capabilities by uniting geospa-
tial analytics, IoT sensor streams, and simulation for “what-if” sce-
nario exploration [16]. For example, IoT-enabled evacuation plat-
forms dynamically match evacuees to routes based on live sensor
and traffic data, while macro-scale traffic flow simulators and agent-
based models capture urban evacuation dynamics and potential bot-
tlenecks [3, 16]. Agent-based models for fall risk among older adults
during evacuation procedures further highlight the importance of
individual-level mobility constraints and facility layouts [20].

Despite these technological advances, the unique needs of health-
care evacuations require specialized consideration [60]. Healthcare-
specific evacuation studies emphasize the unique vulnerabilities of
frail populations. Retrospective analyses of nursing home evacua-
tions during Hurricanes Gustav and Rita report elevated mortality
among cognitively impaired residents and failures in transport
provisions such as the use of non-air-conditioned vehicles, which
aggravated heat-related risks [45]. Likewise, post-Katrina reviews
and qualitative surveys highlight gaps in emergency plans for older
adults living independently and in senior care facilities, document-
ing inadequate preparedness, medication continuity challenges, and
ethical dilemmas around prioritization [27].

To bridge these gaps, the RADAR framework builds upon the
insights and limitations from prior work. We address some of these
challenges by providing a GIS-centric SDSS that couples real-time
hazard monitoring, dynamic facility status feeds, and population
mobility tracking with policy-driven stable matching and risk-
aware, multi-objective routing. By embedding human-in-the-loop
constraints, individual health profiles, mobility limitations, and care
continuity within our platform, we provide an efficient and fair
allocation of resources to older adults in evolving disaster scenarios.

3 THE RADAR APPROACH
In response to these limitations, there is a clear need for a framework
that integrates assignment, routing, and human oversight under
uncertainty. With RADAR, we ingest live facility and hazard feeds,
quantify multidimensional policy objectives, and provide actionable
recommendations to the EOC. RADAR ties together real-time data
integration, dynamic matching, and adaptive routing within a uni-
fied, modular architecture. By coupling spatio-temporal GIS streams
with predictive hazard forecasts, our system can proactively recom-
pute allocations as conditions evolve, while incremental matching
updates preserve allocation stability and bound computational over-
head. We embed human oversight at the decision points through

Figure 1: RADAR Architecture

an interactive dashboard that uncovers policy rationales, supports
“what-if” scenario analysis, and enables operators to adjust weights
or override plans based on new events. Moreover, RADAR’s multi-
objective policy engine explicitly balances efficiency, equity, and
resilience, allowing EOC teams to tailor trade-offs in real-time.

Our framework comprises two components: an aggregate model
that allocates resources using coarse policies and a fine-grained
extension that incorporates resident-specific information (e.g., med-
ical needs, personal preferences) into the allocation. In both cases,
facilities rank candidate partners based on weighted policy scores,
and through stable matching, we pair those evacuating with the
receiving facilities. The fine-grained extension further adjusts as-
signments using individual preferences, medical requirements, and
historical relocation data. RADAR’s architecture is designed via
various modules (see Fig. 1). At the physical layer, a regional mod-
ule collects real-time data from external sources, including seismic
activity, damage assessments, wildfire perimeters, air quality, hos-
pital capacity, bed availability, and traffic conditions. Static and
dynamic facility data are maintained in the facility information
module, while the resource management module monitors demand
and processes resource requests in real time. The relocation module
ranks potential receiving facilities based on compatibility metrics
such as medical needs, residency type, and safety criteria. A policy
engine applies weighted ranking rules to generate comprehensive
policy scores. These scores feed into a stable matching module,
which produces allocations that are stable and envy-free. Finally, a
fairness evaluator computes penalties to capture deviations from
ideal allocations, aggregating these into concise equity metrics that
EOC staff can monitor and balance against efficiency goals.

Thus, by combining dynamic data-driven matching and hazard-
aware HITL routing, we can convert the static allocation paradigms
into an adaptive and better decision-centric framework for disaster
resilience. In the next section, we will discuss the mathematical
formulation of this matching and routing problem.

4 PROBLEM FORMULATION
We formulate the allocation as a policy-driven optimization that
integrates real-time facility conditions, mobility, and social vulnera-
bility. The following section outlines the key components, decision
variables, and constraints of this problem.
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4.1 Modeling Key Components
Modeling Facilities. Facility 𝐹𝑖 in the set F = {𝐹1, 𝐹2, . . . , 𝐹𝑛} has
an identifier 𝐼𝐷𝑖 , name 𝑁𝑖 , and coordinates 𝐿𝑖 (latitude/longitude).
They are classified by a type𝑇𝑖 (Senior Healthcare Facility, Hospital,
and Non-Healthcare Facility) and have a maximum capacity𝐶𝑖 . The
availability of resource 𝑅𝑘 at facility 𝐹𝑖 is denoted by𝐴𝑘𝑖 , and inter-
facility distances and travel times are measured by the function
𝐷 (𝐹𝑖 , 𝐹 𝑗 ). Their operational status 𝑂𝑖 is one of: 𝐺 (Green), normal
operations;𝑌 (Yellow), under control;𝑂 (Orange), modified services
requiring some assistance; 𝑅 (Red), limited services with significant
assistance; and 𝐵 (Black), no services. To capture preparedness, we
use the Social Vulnerability Index 𝑆𝑉 𝐼𝑖 ∈ [0, 1], which quantifies a
community’s susceptibility to a disaster based on 16 socioeconomic
factors as established by FEMA [21].

Modeling People. A person 𝑃 𝑗 in the set P = {𝑃1, 𝑃2, . . . , 𝑃𝑚} is
identified by 𝐼𝐷 𝑗 with a location 𝐿𝑗 . We use 𝑅 𝑗 to specify the facility
type in which they reside. Every individual has specific resource
needs 𝑅𝑛 (𝑃 𝑗 ) and is assigned a triage category 𝑇𝑗 ∈ {𝑅,𝑌,𝐺, 𝐵},
where 𝑅 denotes critical, 𝑌 urgent, 𝐺 minor, and 𝐵 deceased or
non-responsive as defined by the START triage model [4].

Modeling Resources. We represent a resource 𝑅𝑘 as a compo-
nent of the set R = {𝑅1, 𝑅2, . . . , 𝑅𝑝 }. For each facility, the available
quantity of resource 𝑅𝑘 is denoted by 𝑄𝑘𝑖 . A binary parameter
𝑀𝑘𝑖 indicates resource mobility, where 𝑀𝑘𝑖 = 1 if the resource is
relocatable and 0 otherwise. Similarly, resource reusability 𝑈𝑘𝑖 is
a binary variable whose value is 1 when the resource is reusable
and 0 otherwise. We consider three categories of resources: Hu-
man Resources (𝐻𝑅 ), such as doctors, nurses, caregivers, and EMTs,
essential for operating equipment and delivering critical services;
Healthcare Equipment Resources (𝐸𝑅 ), e.g. beds or oxygen tanks that
depend on human resources for effective use; and Service Resources
(𝑆𝑅 ), which includes essential services like rehabilitation therapy or
postmortem care that rely both on human and equipment resources.

Modeling Hazards. We model a hazard 𝐻ℎ as an event in
H = {𝐻1, 𝐻2, . . . , 𝐻𝑙 }. Each hazard is identified by 𝐼𝐷ℎ and char-
acterized by its type 𝑇ℎ (e.g., earthquake, wildfire) and location 𝐿ℎ .
The hazard’s impact is delineated into two regions: the Impacted Re-
gion 𝑍𝑖𝑚𝑝 , corresponding to the red zone directly affected, and the
Warning Region 𝑍𝑤𝑎𝑟𝑛 , the broader at-risk (yellow) zone. To model
hazards in real-time, we ingest road-condition feeds (lane/full clo-
sures, highway incidents) and label segments as open or closed,
inferring short interior egress stretches so evacuees inside𝑍𝑖𝑚𝑝 can
reach the boundary on open, outward paths. For example, Caltrans
QuickMap [12] publishes road feeds with most layers refreshing
about every minute and some every 5–10 minutes. Cascading ef-
fects, denoted by 𝑆ℎ , such as power outages, gas leaks, or structural
collapses, may exacerbate the overall disaster impact.

Modeling Tasks. We define a task 𝑇𝑥 ∈ T = {𝑇1,𝑇2, . . . ,𝑇𝑞} as
an action driving the allocation process. Tasks are categorized into:
(1) Receiving People, (2) Relocating People, (3) Requesting Resources,
and (4) Sending Resources. A facility receiving evacuees indicates
its capacity 𝐶𝑖 and available resources 𝐴𝑘𝑖 . Similarly, a facility
requesting resources specifies a request time 𝑡𝑟 , a request type 𝑅𝑡
(initial, update, or final), and its resource needs 𝑅𝑛 (𝐹𝑖 ) (i.e., human,
equipment, or service resources). For relocation tasks, a timestamp
𝑡𝑚 is recorded, and the assignment depends on the triage priority.

Modeling Policies. Our final key component is the set of policy-
driven ranking functions. Each policy 𝑝 is formalized as a score
function 𝑆𝑝 (𝑖, 𝑗) ∈ [0, 1] (e.g., triage priority, operational status,
proximity, safe-route availability, social vulnerability, etc.). These
scores define the preference lists used in our stable matching pro-
cedures. We discuss them in depth in §5. Therefore, we address this
problem by first using stable matching techniques to maximize the
overall policy score; then, routing using Google’s Distance Matrix
API and ArcGIS Pro historical traffic data [24, 48] to capture real-
world travel conditions. Hence, we integrate them into a unified
approach that optimizes both matching and routing efficiency.

4.2 RADAR Optimization Problem
We formulate this problem around two central research questions:
(1) How can evacuees be matched to facilities to maximize a com-
posite policy-driven objective, integrating safety thresholds, ca-
pacity utilization, and response timeliness under dynamic hazard
and operational constraints? (2) How can routing be computed to
minimize travel time and distance for relocation, while considering
evolving facility statuses and network accessibility constraints?

Let 𝑆𝑝 (𝐹𝑖 , 𝐹 𝑗 ) denote the policy score for matching a facility 𝐹𝑖
relocating-people with a facility 𝐹 𝑗 receiving-people, and let 𝑤𝑝

be the corresponding weight of the policy. We introduce a binary
decision variable 𝑥𝑖 𝑗 ∈ {0, 1} such that 𝑥𝑖 𝑗 = 1 if facility 𝐹𝑖 (with
𝑖 ∈ 𝑆𝑟𝑒𝑙 ) is matched to facility 𝐹 𝑗 (with 𝑗 ∈ 𝑆𝑟𝑒𝑐 ), and 0 otherwise.

max
𝑥𝑖 𝑗

∑︁
𝑖∈𝑆𝑟𝑒𝑙

∑︁
𝑗 ∈𝑆𝑟𝑒𝑐

𝑤𝑝 𝑆𝑝 (𝐹𝑖 , 𝐹 𝑗 ) 𝑥𝑖 𝑗 (1)

s.t.
∑︁

𝑗 ∈𝑆𝑟𝑒𝑐
𝑥𝑖 𝑗 ≤ 1, ∀ 𝑖 ∈ 𝑆𝑟𝑒𝑙 , (1a)

∑︁
𝑖∈𝑆𝑟𝑒𝑙

𝑥𝑖 𝑗 ≤ 1, ∀ 𝑗 ∈ 𝑆𝑟𝑒𝑐 , (1b)

∑︁
𝑖∈𝑆𝑟𝑒𝑙

𝑅𝑖 𝑥𝑖 𝑗 ≤ 𝐶 𝑗 , ∀ 𝑗 ∈ 𝑆𝑟𝑒𝑐 , (1c)

𝑥𝑖 𝑗 ≤ 𝑆Δ (𝐹𝑖 , 𝐹 𝑗 ), ∀ 𝑖 ∈ 𝑆𝑟𝑒𝑙 , ∀ 𝑗 ∈ 𝑆𝑟𝑒𝑐 , (1d)

𝐷 (𝐹𝑖 , 𝐹 𝑗 ) ≤ 𝐷max, ∀ 𝑖 ∈ 𝑆𝑟𝑒𝑙 , ∀ 𝑗 ∈ 𝑆𝑟𝑒𝑐 , (1e)

𝑥𝑖 𝑗 ∈ {0, 1}, ∀ 𝑖 ∈ 𝑆𝑟𝑒𝑙 , ∀ 𝑗 ∈ 𝑆𝑟𝑒𝑐 . (1f)

Furthermore, 𝑅𝑖 denotes the number of evacuees (or resource de-
mand) at facility 𝐹𝑖 . In addition, we use 𝐶 𝑗 to indicate the capacity
available at facility 𝐹 𝑗 , and 𝑆Δ (𝐹𝑖 , 𝐹 𝑗 ) is a binary parameter that
equals 1 if a safe route exists between 𝐹𝑖 and 𝐹 𝑗 and 0 otherwise.
The distance between facilities is given by 𝐷 (𝐹𝑖 , 𝐹 𝑗 ), with a maxi-
mum acceptable threshold 𝐷max. Hence, the overall optimization
problem is then expressed as shown in Eqn. 1.

Constraints (1a) and (1b) ensure a one-to-one matching between
facilities relocating-people and receiving-people. Constraint (1c)
guarantees that the allocated people do not exceed the resource ca-
pacity at the receiving facilities. Constraint (1d) limits assignments
to facility pairs connected by safe routes, while constraint (1e) en-
sures that travel distances remain within a predefined threshold
(detailed in Section 5). Together, this forms an integrated frame-
work, simultaneously considering dynamic and static attributes of
facilities, people, resources, hazards, and tasks in a disaster response.
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5 DECISION-MAKING POLICIES IN THE
RADAR MODEL

In this section, we present the set of policy-driven ranking rules
used to guide evacuee relocation (§5.1, §5.2) and introduce our
model (§5.3). In addition, we illustrate two extensions of our ap-
proach: the application of policy-driven rules for requesting and
sending resources (§5.4.1) and a fine-grained extension that incor-
porates individual-level evacuee preferences (§A.1).

5.1 Policies for Receiving People
A receiving facility 𝐹rec prioritizes evacuees from relocating facility
𝐹rel based on the following rules:

Triage status: Individuals are prioritized based on their triage
category [4], ensuring that limited resources are allocated efficiently.
Those in critical condition receive the highest priority to maximize
survival rates:

𝑆tri (𝐹rel, 𝑃𝑖 ) =


1, if𝑇𝑖 = Red (Immediate),
0.75, if𝑇𝑖 = Yellow (Delayed),
0.5, if𝑇𝑖 = Green (Minor),
0, if𝑇𝑖 = Black (Deceased).

(2)

Same residency type: They also prioritize evacuees from facilities
of the same type (e.g., SHF to SHF).

𝑆res (𝐹rel, 𝐹rec ) =
{
1, if𝑇rel = 𝑇rec,

0, otherwise.
(3)

Proximity for faster relocation: To minimize delays, facilities
that are closer to the receiving facility are prioritized. We quantify
this as:

𝑆𝐷 (𝐹𝑟𝑒𝑙 , 𝐹𝑟𝑒𝑐 ) =
max

𝐹𝑥 ∈𝑁𝑟𝑒𝑙

𝐷 (𝐹𝑟𝑒𝑙 , 𝐹𝑥 )

𝐷 (𝐹𝑟𝑒𝑙 , 𝐹𝑟𝑒𝑐 )
, (4)

where 𝐷 (𝐹𝑟𝑒𝑙 , 𝐹𝑟𝑒𝑐 ) is the distance between 𝐹𝑟𝑒𝑙 and 𝐹𝑟𝑒𝑐 , and
𝑁𝑟𝑒𝑙 denotes the set of𝑛 nearest candidate facilities. To compute dis-
tances and travel times between multiple origins and destinations,
we used Google’s Distance Matrix API [24], which incorporates
real-time traffic and network conditions. The API processes concur-
rent HTTPS requests and returns JSON responses, enabling rapid
distance assessments. This capability allows us to integrate precise,
real-world routing data into our decision-making process.

Operational status: Relocating-facilities with lower operational
readiness are given higher priority. i.e., those with limited services
(Red) or no services (Black) are prioritized.

𝑆𝑂 (𝐹𝑟𝑒𝑙 , 𝐹𝑟𝑒𝑐 ) =


1, if𝑂𝑟𝑒𝑙 = Red or Black,
0.75, if𝑂𝑟𝑒𝑙 = Orange,
0.5, if𝑂𝑟𝑒𝑙 = Yellow,
0, if𝑂𝑟𝑒𝑙 = Green

(5)

5.2 Policies for Relocating People
When relocating evacuees, relocating facilities 𝐹rel apply analogous
criteria. They prefer receiving facilities of the same residency type
(Eqn. 3). In addition, they prioritize facilities that are not approach-
ing their full capacity constraints (e.g., maximum bed capacity).
However, only facilities with operational status 𝑂𝑟𝑒𝑙 = Green are
eligible for relocation.

Proximity to impacted region: Facilities can receive evacuees
if they are located at a safe distance from the impacted region (as
shown in Fig. 2). Let𝑑 = 𝐷 (𝐹𝑟𝑒𝑐 ,𝐶) be the distance from a facility to
the impacted zone, and 𝑟 the radius of the impacted zone. We define
𝑥 as the additional safety margin such that a facility is considered

Figure 2: Impacted Region (red) and Mandatory Evacuation
Warning Zone (yellow) (Palisades Fire 01/10/25, 7 pm PST)

safe only if 𝑑 > 𝑟 + 𝑥 . Hence, facilities prioritize those that are
nearest to that threshold. We define this as follows:

𝑆imp (𝐹rec ) =

0, if 𝑑 ≤ 𝑟 + 𝑥,

𝑟+𝑥
𝑑

, if 𝑑 > 𝑟 + 𝑥,
(6)

Safe routes: The availability of safe transportation paths is
critical. Hence, facilities that can be reached via safe routes are
prioritized. We denote this as follows:

𝑆Δ (𝐹𝑟𝑒𝑐 , 𝐹𝑟𝑒𝑙 ) =

1, if safe routes exist,

0, otherwise.
(7)

Social Vulnerability Index (SVI): Facilities in areas with high
SVI [22] are also prioritized as shown in Eqn. 8. The higher the
index, the more vulnerable the region. Hence, the maximum SVI is
taken over a set 𝑁𝑟𝑒𝑐 of candidate receiving facilities (Eqn. 9). The
range is as follows:

𝑆𝑉 𝐼 =


𝑉𝑒𝑟𝑦_𝐿𝑜𝑤, if 0 < 𝑆𝑉 𝐼 ≤ 0.25,
𝐿𝑜𝑤, if 0.25 < 𝑆𝑉 𝐼 ≤ 0.5,
𝐻𝑖𝑔ℎ, if 0.5 < 𝑆𝑉 𝐼 ≤ 0.75,
𝑉𝑒𝑟𝑦_𝐻𝑖𝑔ℎ, if 0.75 < 𝑆𝑉 𝐼 ≤ 1

(8)

𝑆𝑆𝑉 𝐼 (𝐹𝑟𝑒𝑐 , 𝐹𝑟𝑒𝑙 ) =
𝑆𝑉 𝐼𝑟𝑒𝑙

max
𝐹𝑥 ∈𝑁𝑟𝑒𝑐

𝑆𝑉 𝐼𝑥
. (9)

Prior to the matching process, we compute the final score for re-
locating people to facilities as the sum of all policy scores. Although
many of these scores are linear (i.e., proportional and constant-slope
forms), they are grounded in real-world operational data feeds.

5.3 RADAR Model
This is our baseline model, which minimizes computational com-
plexity by allocating resources in clusters rather than on an indi-
vidual basis. It uses aggregate information to provide EOCs with
rapid situational awareness and effective resource distribution in
time-critical disaster scenarios. Inspired by the Gale-Shapley stable
matching (SM) problem [23], we use predefined policies to score and
rank facilities’ preferences. On one side, facilities that are relocating,
and on the other side, receiving facilities (potential candidates) that
can accommodate the evacuees. Once ranked, we aim to achieve
a two-sided optimal pairing between the facilities. This involves
optimally pairing two disjoint sets while ensuring no unmatched
pairs prefer each other over their assigned matches.



SIGSPATIAL ’25, November 3–6, 2025, Minneapolis, MN, USA Kenne et al.

Table 1: Relocating-Facilities (𝐹 𝑖
𝑟𝑒𝑙

)
ID Type Oi SVIi Needs
𝐹 1
𝑟𝑒𝑙

H Y 0.30 Medication
𝐹 2
𝑟𝑒𝑙

S R 0.65 Oxygen
𝐹 3
𝑟𝑒𝑙

N O 0.50 Food
𝐹 4
𝑟𝑒𝑙

S G 0.40 Nurse
𝐹 5
𝑟𝑒𝑙

H O 0.75 Ventilator

Table 2: Receiving-Facilities (𝐹 𝑗
𝑟𝑒𝑐 )

ID Type Oi SVIi Resource
𝐹 1𝑟𝑒𝑐 N G 0.20 Nurses(5)
𝐹 2𝑟𝑒𝑐 S Y 0.50 Oxygen(10)
𝐹 3𝑟𝑒𝑐 S R 0.80 Med(50),Bed(10)
𝐹 4𝑟𝑒𝑐 H G 0.35 Ventilator(15)
𝐹 5𝑟𝑒𝑐 N O 0.60 Oxygen(5)

Table 3: Distances 𝐷 (𝐹 𝑖
𝑟𝑒𝑙

, 𝐹
𝑗
𝑟𝑒𝑐 )

𝐹𝑠1 𝐹𝑠2 𝐹𝑠3 𝐹𝑠4 𝐹𝑠5
𝐹𝑟1 5 10 12 15 9
𝐹𝑟2 12 8 14 11 10
𝐹𝑟3 7 9 20 5 15
𝐹𝑟4 10 16 9 8 14
𝐹𝑟5 3 13 25 6 19

Given two sets: 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑚},
each agent 𝑎𝑖 in 𝐴 has a preference ranking over agents in 𝐵, and
vice versa. Each agent maintains a preference ordering, where
𝑃𝑎𝑖 = {𝑏 𝑗 ≻ 𝑏𝑘 ≻ · · · } indicates the preference list of 𝑎𝑖 and
𝑃𝑏 𝑗

= {𝑎𝑘 ≻ 𝑎𝑙 ≻ · · · } that of 𝑏 𝑗 , with ≻ denoting a preference
relation. A matching function𝑀 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 maps agents to
each other, such that 𝑀 (𝑎𝑖 ) = 𝑏 𝑗 and 𝑀 (𝑏 𝑗 ) = 𝑎𝑖 , ensuring that
each agent is either matched or remains unassigned. A matching
is stable if no blocking pair exists. Hence, a blocking pair (𝑎𝑖 , 𝑏 𝑗 )
exists if 𝑎𝑖 prefers 𝑏 𝑗 over its current match𝑀 (𝑎𝑖 ) and 𝑏 𝑗 prefers
𝑎𝑖 over its current match𝑀 (𝑏 𝑗 ); that is, both would benefit from
pairing together instead with their current partners. Therefore, the
objective is to find a matching𝑀 such that no blocking pairs remain.
Initially, each agent 𝑎𝑖 proposes to its highest-ranked, unproposed
𝑏 𝑗 . Each 𝑏 𝑗 tentatively accepts the best-ranked offer while rejecting
lower-ranked agents. If a rejected agent finds a better match, it
updates its proposal. The process repeats until no further improve-
ments occur and terminates in 𝑂 (𝑛2) time complexity. Hence, the
objective function maximizes the sum of ranking scores:

max
∑︁𝑛

𝑖=1

∑︁𝑚

𝑗=1
𝑃𝑎𝑖 (𝑏 𝑗 )𝑋𝑖 𝑗 , (10)

where 𝑋𝑖 𝑗 = 1 , if 𝑎𝑖 is matched to 𝑏 𝑗 , and 0 otherwise.
Exploring Stable Matching in RADAR: Let F𝑟𝑒𝑙 = {𝐹 1

𝑟𝑒𝑙
, 𝐹 2

𝑟𝑒𝑙
,

. . . , 𝐹𝑛
𝑟𝑒𝑙

} be the set of relocating-facilities and F𝑟𝑒𝑐 = {𝐹 1𝑟𝑒𝑐 , 𝐹 2𝑟𝑒𝑐 ,
. . . , 𝐹𝑚𝑟𝑒𝑐 } the set of receiving-facilities. Each facility 𝐹 𝑖

𝑟𝑒𝑙
∈ F𝑟𝑒𝑙

ranks 𝐹 𝑗
𝑟𝑒𝑐 ∈ F𝑟𝑒𝑐 based on their policies. The objective is to maxi-

mize preference scores of both 𝐹 𝑖
𝑟𝑒𝑙

and 𝐹 𝑗
𝑟𝑒𝑐 . Hence, a stable match

means no facility in F𝑟𝑒𝑙 and facility in F𝑟𝑒𝑐 mutually prefer each
other over their assigned partners. To illustrate this, let’s assume
we have 10 facilities among which 5 are relocating and the other
5 are potential receiving-facilities (As shown in Tables 1 and 2).
Using the policies for relocating (e.g., proximity, safe routes) and
for receiving people (e.g., triage, operational status), each facility
computes the score of each potential candidate and ranks them as
shown in Alg. 1. For example, if we consider 𝐹 2

𝑟𝑒𝑙
, which needs

to relocate people to facilities with available oxygen resources, it
prefers 𝐹 2𝑟𝑒𝑐 and 𝐹 5𝑟𝑒𝑐 since only these have oxygen. In addition
Table 3 shows that 𝐹 2𝑟𝑒𝑐 is 8 miles away vs. 𝐹 5𝑟𝑒𝑐 which is 10 miles.
Assuming there is a safe route to get to those two facilities, 𝐹 2

𝑟𝑒𝑙

ranking is {𝐹 2𝑟𝑒𝑐 ≻ 𝐹 5𝑟𝑒𝑐 ≻ . . . }. Following similar process, all fa-
cilities in the set F𝑟𝑒𝑙 rank those in F𝑟𝑒𝑐 and vice versa. Next, we
perform matching between the two sets as shown in Alg. 2.

We apply the same logic to the set of facilities that relocate people
(i.e., nursing homes or hospitals that need to evacuate residents)
and the set of facilities receiving the evacuees (i.e., shelters or other
healthcare facilities with available capacity). Given 𝑁 facilities and
𝑃 policies, the matching is done in 𝑂 (𝑁 2) time complexity. To
reduce the search space complexity, we only consider the top 𝑘

closest facilities that are safe, instead of all possible matches. This

Algorithm 1: Policy Score Computation & Preference List
Generation
Input: Set of relocating-facilities F𝑟𝑒𝑙 ,
Set of receiving-facilities F𝑟𝑒𝑐 ,
Policy functions {𝑆𝑝 (𝑓 , 𝑐 ) }𝑃𝑝=1 and weights {𝑤𝑝 }𝑃𝑝=1
Output: Preference list 𝐿 (𝑓 ) = ⟨𝑐1, 𝑐2, . . . , 𝑐 |𝐿 (𝑓 ) | ⟩ ∀𝑐 ∈ F𝑟𝑒𝑐

1 foreach 𝑓 ∈ F𝑟𝑒𝑙 do
2 Initialize List← ∅;
3 foreach 𝑐 ∈ F𝑟𝑒𝑐 do
4 Compute policy score 𝑆 (𝑓 , 𝑐 ) ← ∑𝑃

𝑝=1 𝑤𝑝 𝑆𝑝 (𝑓 , 𝑐 ) ;
5 Append the pair (𝑐, 𝑆 (𝑓 , 𝑐 ) ) to List;

6 Sort List in descending order by 𝑆 (𝑓 , 𝑐 ) ;
7 𝐿 (𝑓 ) ← sequence of candidates 𝑐 from the sorted List;

8 return {𝐿 (𝑓 ) | 𝑓 ∈ F𝑟𝑒𝑙 };

Algorithm 2: Resource Matching
Input: Facilities F𝑟𝑒𝑙 , F𝑟𝑒𝑐 ; Preference list

𝐿 (𝑓 ) = ⟨𝑐1, 𝑐2, . . . , 𝑐 |𝐿 (𝑓 ) | ⟩ ⊆ F𝑟𝑒𝑐 , ∀𝑓 ∈ F𝑟𝑒𝑙
Output:Matching𝑀 ⊆ F𝑟𝑒𝑙 × F𝑟𝑒𝑐

1 𝑀 ← ∅ // Initialize matching

2 for 𝑓 ∈ F𝑟𝑒𝑙 do Mark 𝑓 as free ;
3 while there exists a free 𝑓 ∈ F𝑟𝑒𝑙 with 𝐿 (𝑓 ) ≠ ∅ do
4 Let 𝑐 ← first candidate in 𝐿 (𝑓 ) ;
5 Remove 𝑐 from 𝐿 (𝑓 ) ;
6 if 𝑐 is free then
7 Add (𝑓 , 𝑐 ) to𝑀 ;
8 else
9 Let 𝑓 ′ be the current match of 𝑐 in𝑀 ;

10 if 𝑐 prefers 𝑓 over 𝑓 ′ then
11 Remove (𝑓 ′, 𝑐 ) from𝑀 and add (𝑓 , 𝑐 ) to𝑀 ;
12 Mark 𝑓 ′ as free;

13 return𝑀 ;

restriction reduces proposals from 𝑂 (𝑁 2) to 𝑂 (𝑁𝑘) and bounds
routing queries. When approaching nearby capacity, we expand
the candidate set in batches of Δ𝑘 until a feasible pair is found.

To handle evolving disaster conditions, we periodically (e.g., ev-
ery 15–30 min) or upon detection of a major hazard update (such
as a newly impassable road segment or change in facility status),
recompute the matching (Algo. 3). Rather than recomputing all
assignments, we restrict this procedure only to the subset of newly
impacted relocating facilities I ⊆ F𝑟𝑒𝑙 whose initial match has
been invalidated by the new hazard state 𝐻 . As shown in lines
7–11, for each 𝑓 ∈ I we first reuses its precomputed top-𝑘 pref-
erence list 𝐿𝑘 (𝑓 ) and apply both capacity checks (demand(𝑓 )) and
safeRoute(𝑓 , 𝑐, 𝐻 ) test to find an immediate reassignment. If none
of those candidates passes (lines 13–15), we dynamically expand
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Algorithm 3:Dynamic Rematching under Evolving Hazard
Input :𝑀 , I ⊆ F𝑟𝑒𝑙 , 𝐿𝑘 (𝑓 ) , F𝑟𝑒𝑐 , capacities𝐶 [ · ],

hazard 𝐻 , policies { (𝑆𝑝 , 𝑤𝑝 ) }, batch Δ𝑘
Output :Updated matching𝑀 ′

1 𝑀 ′ ← 𝑀 ;
2 foreach 𝑓 ∈ I do
3 assigned← false; considered← ∅; batch← 𝐿𝑘 (𝑓 ) ;
4 while not assigned and considered ≠ F𝑟𝑒𝑐 do
5 foreach 𝑐 ∈ batch do
6 if 𝐶 [𝑐 ] ≥ demand(𝑓 ) and safeRoute(𝑓 , 𝑐, 𝐻 ) then
7 𝑀 ′ [ 𝑓 ] ← 𝑐 ;
8 𝐶 [𝑐 ] ← 𝐶 [𝑐 ] − demand(𝑓 ) ;
9 assigned← true;

10 break;

11 considered← considered ∪ {𝑐 };
12 if assigned then break;
13 remaining← { 𝑐 ∈ F𝑟𝑒𝑐 | 𝑐 ∉ considered};
14 if remaining= ∅ then break;
15 foreach 𝑐 ∈ remaining do
16 𝑆 (𝑓 , 𝑐 ) ← ∑

𝑝 𝑤𝑝 𝑆𝑝 (𝑓 , 𝑐 ) ;
17 batch←top-Δ𝑘 from remaining by 𝑆 (𝑓 , 𝑐 ) ;
18 if not assigned then log_warning (“No feasible match for 𝑓 ");

19 return𝑀 ′;

the candidate set in increments of Δ𝑘 , recompute the combined
policy scores 𝑆 (𝑓 , 𝑐), and repeat until a feasible match is found or
all options are exhausted. By operating only on affected facilities
and growing the search space in controlled batches, this approach
preserves valid assignments, bounds computational complexity,
and provides rapid, localized adaptation to evolving hazards.

While this model provides an efficient aggregate-based allocation
mechanism, it does not incorporate individual-level evacuee pref-
erences (i.e., preferences specified by the individuals themselves).
In addition, individuals are grouped in clusters with the same re-
location needs, which may not always hold in real-world settings.
To address these limitations, we first extend our framework with
policies for requesting and sending resources to manage resource
exchanges (§5.4.1), and then introduce a fine-grained improvement
of our model that integrates resident-specific preferences, including
their medical information, into the allocation process (§A.1).

5.4 RADAR Extensions
5.4.1 Policies for Requesting and Sending Resources. Several
of the spatio-temporal policies introduced for relocating people,
i.e., proximity (Eqn. 4), safe-route viability (Eqn. 7), operational
readiness (Eqn. 5), and social vulnerability (Eqn. 9) also apply in the
resource requesting and sending context, since both problems rely
on accurate distance measurements, hazard overlays, and facility
status feeds. In addition, resource exchanges require policies to
capture inventory levels, request criticality, delivery consolidation,
and sender flexibility. Hence, we use a slack-ratio (a principle of
inventory management that quantifies a sender’s buffer capacity
relative to its total capacity) [9] to prevent over-exhaustion of any
single source by favoring senders with more available inventory.

𝑆slack (𝐹send ) =
available_stock(𝐹send )

capacity(𝐹send )
(11)

The available stock is the count of uncommitted units (beds, water
bottles, etc.), and the capacity represents the maximum stock. Next,
the request urgency captures the relative criticality of each de-
mand. Drawing on priority-queueing theory [7, 8], we normalize a
facility’s current demand against the peak regional demand.

𝑆urg (𝐹req ) =
demand(𝐹req )

max𝑓 ′∈Freq demand(𝑓 ′ ) (12)

Here, demand(𝐹req) aggregates all requested units (e.g., ICU beds,
oxygen tanks), so that higher-need requests automatically receive
higher scores within the [0, 1] range. To improve logistical effi-
ciency, we introduce a consolidation potential metric based on
classical vehicle-routing heuristics [17]. We identify clusters of co-
located requests Rcluster (𝐹req) and compare their size to the total
local request set Rall (𝐹req).

𝑆grp (𝐹req ) =
| Rcluster (𝐹req ) |
| Rall (𝐹req ) |

(13)

A higher value indicates a stronger potential for multi-stop deliver-
ies, reducing overall travel distance and vehicle utilization. Finally,
the commitment-ratio [43] policy ensures senders retain flexibil-
ity for future surges by penalizing near-exhaustion of capacity.

𝑆commit (𝐹send, 𝐹req ) = 1 − allocated(𝐹send )
capacity(𝐹send )

(14)

In Eqn. 14, allocated(𝐹send) indicates the current reserved stock.
Values near 1 indicate ample remaining capacity, while values closer
to 0 discourage further assignments. All request-side and send-side
policy scores 𝑆𝑝 are then combined to obtain the final policy score as
shown in Eqn. 15, where weight𝑤𝑝 reflects the EOC priorities (e.g.
speed versus equity trade-offs). These aggregated scores produce
preference lists that drive the matching and routing of resources.

𝑆 (𝐹𝑟𝑒𝑞, 𝐹𝑠𝑒𝑛𝑑 ) =
∑︁
𝑝

𝑤𝑝 𝑆𝑝 (𝐹𝑟𝑒𝑞, 𝐹𝑠𝑒𝑛𝑑 ) (15)

5.4.2 RADAR Fine-Grained: Integrating Medical Profiles
andPreferences. Wedeveloped a fine-grained extension of RADAR
that integrates resident-level medical profiles, care continuity con-
straints, and social preferences into the allocation process. This
enhancement enables the system to take into account factors such
as specialized clinical service requirements, existing provider affili-
ations, and personal preferences. Incorporating these preferences
increases the complexity of the matching and routing process, but
yields more person-centered relocation plans. This extension is
particularly relevant in long-term scenarios or for populations with
chronic care needs, where inappropriate placementsmay exacerbate
health risks. A complete description of the RADAR Fine-Grained
model (including formal definitions, scoring metrics, and computa-
tional challenges) is provided in Appendix A.1.

6 EXPERIMENTAL EVALUATION
We evaluated RADAR across three realistic disaster scenarios: (1) A
wildfire in the Palisades region with rapid reallocations amid shift-
ing fire perimeters and facility statuses (6.1); (2) A 7.8-magnitude
earthquake drill in Orange County, CA, showcasing hospital
bed surge management and safe routing amid infrastructure dam-
age (6.2); and (3) A countywide water contamination drill explor-
ing relocation and water resupply for those sheltering-in-place to
sustain operations (6.3).

Setup: We obtained facility data (including facility type, licensed
bed capacity, location, etc) from California’s Health and Human Ser-
vices Agency [11] and HCAI [26] open datasets (~10409 facilities).
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We stored them in a PostgreSQL/PostGIS database to enable efficient
geospatial queries. We integrated OpenStreetMap road network
data with real-time and historical traffic information with Google’s
Distance Matrix API [24] and ArcGIS Pro to model distances and
travel times between facilities. Facility operational statuses and
resource availability were updated dynamically based on ReddiNet
situational reports. Hazard footprints and progression data were
obtained from authoritative sources: CalFire for wildfire perime-
ters [10], USGS ShakeMap for earthquake impact [53], and OCHCA
and ReddiNet reports for water-related disruptions [37, 44]. We
acknowledge that in disaster situations, these feeds may not fully
capture real-time conditions accurately. Therefore, supplementing
or replacing them may be necessary to improve accuracy. For eval-
uating allocations, we generated synthetic resident profiles guided
by domain experts, including individualized medical needs and
preferences. Across all scenarios, we used stable matching to as-
sign evacuees or resources while comparing RADAR’s performance
against baseline and state-of-the-art allocation strategies.

6.1 Wildfire Use Case: Evacuation Based on the
Palisades Fire

Figure 3: Assignment and Routing for Wildfire Scenario

We simulated evacuations based on real conditions during the Pal-
isades fire (Fig. 3). Three facilities in the projected fire zone were
selected as evacuees. We compare RADARwith several other alloca-
tion methods. First, we consider three variants of a greedy method:
assigning evacuees to (1) the nearest facility by distance (Greedy-D);
(2) minimizing estimated travel time (Greedy-TT), and (3) based
on available capacity (Greedy-C). We also include a (4) Random
allocation method, assigning evacuees arbitrarily to facilities of the
same type with available resources. This method serves as a con-
servative lower bound, where we select only from a pool of eligible
facilities. We also compare RADAR against two state-of-the-art op-
timization methods: (5) Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [18] and (6) Ant Colony Optimization (ACO) [56].

Key metrics include: average travel time for evacuee relocation;
preferences via a penalty-based satisfaction score, where lower
penalties indicate better alignment with resident preferences; and
efficiency loss ("price of fairness"[7]), which assesses the trade-off
between fairness and optimal travel time. These metrics collectively
provide a comprehensive evaluation of efficiency and equity.

Each impacted facility receives its top five candidate receiving
facilities, which are ranked based on their policy scores (§5). These
correspond to the closest and safest preferred facilities with the
available resources as determined by the policies. Similarly, each
evacuating facility generates a ranked list of preferred destina-
tions. We then apply stable matching to pair evacuating facilities
(or individual evacuees, in the fine-grained model) with receiving

facilities, subject to capacity constraints. Matching optimizes policy
scores and ensures stability, preventing any facility from preferring
another feasible match. The matching process repeats as the fire
expands, updating allocations as new facilities become impacted.

We considered three types of impacted facilities: Emergency
Room (ER), Intensive Care Unit (ICU), and General Acute Care
Hospital (GACH), totaling 182 bed assignments and ensuring no
single facility becomes overwhelmed (Fig. 4a and 4e). Outliers with
higher travel times indicate cases where only distant facilities had
sufficient capacity. We also measured efficiency loss by comparing
makespans against the optimal baseline of 37 minutes (the shortest
travel time to the nearest safe facility). Fig. 4c shows RADAR incurs
an efficiency loss of only 8 minutes, which is modest compared to
other approaches. This slight trade-off supports RADAR’s policy-
driven improvements in stability and fairness.

Fig. 4b and 4f illustrate the average makespan (average travel
time, in minutes, across all bed categories). During daytime, RADAR
achieved a makespan of 45 min., compared to 50 min. (Greedy-D),
48 min. (Greedy-TT), 55 min. (Greedy-C), and 78 minutes (Random).
Although NSGA-II and ACO showed slightly better makespans
(43 and 42 min., respectively), they lack policy integration and
stable matching guarantees offered by RADAR. We also assessed
preference using a penalty-based satisfaction metric, reflecting de-
viations from evacuees’ preferred allocations. Fig. 4d and Fig. 4h
show RADAR has a significantly lower standard deviation, indi-
cating more consistent satisfaction across evacuees compared to
Greedy and Random methods. NSGA-II and ACO, despite relatively
low variance, showed reduced overall resident satisfaction due to a
lack of policy integration.

6.2 Earthquake Use Case: Managing Hospital
Bed Surge and Safe Routing

Figure 5: Assignment and Routing for Earthquake Scenario

As part of a county-wide emergency preparedness drill, we simu-
lated the relocation of two hospitals (Kaiser Foundation Hospital
and St. Jude Medical Center) under disaster conditions (Fig. 5). To-
gether, the hospitals had a combined licensed capacity of 582 beds.
However, ReddiNet reports indicated 274 available beds in nearby
facilities, but only 109 were in facilities operating under “Normal
Operations” status, resulting in a surge scenario where 308 pa-
tients required rapid relocation under constrained capacity. Using
RADAR, we generated recommended destination facilities based on
real-time constraints such as capacity, proximity, and infrastructure
status. The resulting dashboard (Fig. 11) presents a summary of
the recommended allocations, including destination options and
relevant operational metrics to support decision-making.

Fig. 6 compares estimated travel distances and durations across
20 origin-destination facility pairs, i.e. routes, at four times of day:
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(a) Bed Coverage (Daytime) (b) Average Makespan (c) Efficiency Loss (d) Preference Distribution

(e) Bed Coverage (Nighttime) (f) Average Makespan (g) Efficiency Loss (h) Preference Distribution

Figure 4: Comparison of Daytime (Top row) vs. Nighttime (Bottom row) allocation performance across four core metrics:
bed-category coverage (a,e), average makespan (b,f), efficiency loss (c,g), and preference distribution (d,h).

(a) Distance by Time of Day (b) Distance by Day of the Week

(c) Travel Time by Time of Day (d) Travel Time by Day of Week

Figure 6: Earthquake results for Distance (km) and Travel
Time Distribution (min) by Time of Day (a, c), and by Time
of Week (b, d)

morning (9am), afternoon (3pm), night (9pm), and dawn (3am). As
demonstrated in Fig. 5, given the affected area, the 3 closest facilities
were unable to receive people. As expected, the travel distances
remain relatively stable across time periods since those physical
routes do not change. However, small variations in distance (espe-
cially for routes R5 through R14) suggest that routing algorithms
may adjust paths slightly in response to traffic conditions, selecting
alternate roads to optimize travel time.

In contrast, travel time varies more significantly by time of day.
Afternoon (3pm) consistently shows the longest travel durations,
likely due to increased traffic congestion during mid-day. Morn-
ing (9am) times are also elevated, reflecting typical commute-hour
delays. Night (9pm) and dawn (3am) generally offer the shortest
travel times, corresponding with lower traffic volumes. For example,
R19 shows a difference of over six minutes between the afternoon
and dawn. These findings highlight how traffic dynamics drive

temporal variation in travel time, which is important for planning
time-sensitive facility relocations or emergency response strategies.

6.3 Water Contamination Use Case: Relocation
Based on Water Constraints

Figure 7: Assignment and Routing for Water Scenario

For this scenario, each facility was initialized with water reserves
according to California’s General Acute Care Hospital (GACH)
emergency standards: 150 gallons per bed for 72 hours, plus a
5,000-gallon refillable tank [15, 54]. We updated facility-level wa-
ter availability using real-time ReddiNet [44] reports and enabled
congestion-aware delivery routing via CalTrans [13] feeds and the
Google Distance Matrix API [24]. For re-supply, we identified each
facility’s ten nearest potable-water vendors and incorporated five
official Points-of-Distribution (PODs) from OCHCA [37]. Facilities
still under contamination were excluded as relocation targets, and
candidate sites were filtered to ensure sufficient water reserves for
incoming residents.

Our results illustrate how RADAR provides resident relocations
as the scale of water-contamination impacts grows. Fig. 8 shows
three paired histograms and scatter-and-fit plots for scenarios in
which 3, 10, and 20 facilities require evacuation. Distance distri-
butions shift steadily outward: when only 3 facilities relocate, the
mean move is 9.10 km (𝜎=4.33 km), expanding to 10.10 km (𝜎=5.52
km) at 10 facilities and 11.74 km (𝜎=7.17 km) at 20. These results
exhibit right skew, particularly in the 20-facility case, where most
relocations fall between 5 km and 15 km, but a long tail extends
beyond 30 km. An overlaid normal curve in that plot captures
the central mass but underestimates both the very short moves
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(a) Distance Distribution (3 facilities) (b) Travel-time Distribution (c) Time–Distance Correlation (𝑅2=0.63)

(d) Distance Distribution (10 facilities) (e) Travel-time Distribution (f) Time–Distance Correlation (𝑅2=0.84)

(g) Distance Distribution (20 facilities) (h) Travel-time Distribution (i) Time–Distance Correlation (𝑅2=0.83)

Figure 8: Water-contamination results for 3 (Top row), 10 (Middle row), and 20 (Bottom row) impacted facilities

( 1.5–5km) and the extended relocations, highlighting occasional
assignments to distant, uncontaminated sites once nearby capacity
is exhausted. Travel-time distributions reflect a progression where
the mean trip increases from 11.87 min (𝜎=3.86 min) through 12.45
min (𝜎=5.52 min) to 14.01 min (𝜎=5.32 min). In addition, all three
cases retain heavy-tailed shapes, where most relocations complete
in roughly 9–20 min, but some demand up to 30 min on the road.
In practical terms, even under large-scale disruptions, over 90% of
residents/patients reach a safe facility within two standard devia-
tions of these means, ensuring that emergency evacuation remains
within manageable time windows for first responders.

Likewise, the scatter plots quantify the strength of the distance–
time relationship under our safe route constraints. The variance
proportion 𝑅2 is 63% when relocating 3 facilities; rising to 84% with
10 facilities and settling at 83% for 20. This means that as more facil-
ities relocate, transit time becomes increasingly predictable from a
straight-line distance alone as congestion and detours play a smaller
relative role when the candidate pool increases. A high proportion
indicates that the decision makers can reliably estimate evacuation
loads, which simplifies resource staging and route planning under
time constraints. In addition, Fig. 10 (Appendices) illustrates vendor-
access distances and water-delivery times across all 144 re-supply
assignments, revealing a similarly compact delivery radius.

These metrics demonstrate RADAR’s ability to balance capacity,
safety, and timeliness across realistic emergency scenarios. Mean
distances and times increase roughly linearly with the number of
impacted facilities, while variances remain bounded. Even in the
most demanding scenario, the majority of relocations conclude in
under 20 minutes over distances of 12 km, indicating that RADAR
can support fast, hazard-aware evacuations for vulnerable popula-
tions during widespread water-contamination events.

In addition to quantitativemetrics, we received valuable feedback
from stakeholders during drills and tabletop exercises. EOC staff
reported that RADAR’s automated, data-driven, policy-aware rec-
ommendations substantially reduced manual matching effort and
served as a computational check to rapidly compare and refine their
own allocations (see the dashboard in Fig. 12). Senior-care facility
administrators emphasized that some of the dashboards improved
shared situational awareness and made it faster to communicate
actionable options to first responders.

7 CONCLUSION AND FUTUREWORK
In this paper, we presented RADAR, a decision support system that
integrates live hazard feeds, real-time traffic, and dynamic facility
statuses within a PostGIS-enabled framework to address critical
matching and routing challenges in disaster response. By coupling
policy-driven stable matching with risk-aware routing, RADAR
provides envy-free assignments and adaptive evacuation paths
as conditions evolve. Comprehensive simulations and real-world
drills with county health agencies and first responders demonstrate
significant improvements in both routing efficiency and resource
distribution compared to conventional methods. Although our cur-
rent focus is senior health care, RADAR’s modular architecture and
policy framework make it extensible to other populations.

Future efforts will strive to enhance the scalability of RADAR
and integrate additional real-time data streams. We also plan to
cautiously integrate light LLM models as a quick recommendation
guide and comparison aid only (given current limitations in accu-
racy and hallucinations) while keeping the optimization engine
authoritative. Ultimately, we aim to deliver more accurate, action-
able, and data-driven recommendations to Emergency Operations
Centers for better informed decision-making during disasters.
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A APPENDICES
A.1 RADAR Fine-Grained: Integrating Medical

Profiles and Preferences
Our model assumes that all individuals within a facility have ho-
mogeneous resource needs and relocation preferences, making it
suitable for rapid, bulk evacuations of short-term facilities (hos-
pitals). However, people have heterogeneous needs and exhibit
diverse medical conditions, personal preferences, and social con-
straints. Leveraging domain experts’ knowledge and based on our
experience working with Senior Health Facilities (SHFs) [30, 38], we
capture fine-grained information about older adults in long-term
care settings (e.g., Assisted Living Facilities, Skilled Nursing Facili-
ties). Therefore, we extend our model to incorporate resident-level
information into the decision-making process (Fig. 9). We char-
acterize each resident 𝑟 not only by static attributes (age, gender,
room assignment) but also by detailed medical profiles, dynamic
care requirements, and individualized preferences. Hence, key en-
hancements in RADAR fine-grained are as follows:

Medical compatibility:We adapt the concept of recall from in-
formation retrieval [47] to quantify how well a candidate receiving
facility 𝐹rec can satisfy the set of specialized services Sreq required
by relocating facility 𝐹rel. Formally:

𝑆med (𝐹rel, 𝐹rec ) =
��Sreq ∩ Savail (𝐹rec ) ��

|Sreq |
, (16)

whereSavail (𝐹rec) is the set of specialized services (e.g. dialysis, ven-
tilator support) that 𝐹rec can provide. By normalizing to [0, 1], we
prioritize facilities that cover the largest fraction of required clinical
services. For example, if 𝐹rel requires Sreq = {dialysis, ventilator,
wound care} and 𝐹rec offers Savail = {dialysis, wound care}, then
𝑆med =

| { dialysis, wound care} |
3 = 2

3 ≈ 0.67, indicating that 𝐹rec can
fulfill two out of three required services.

Continuity of care: Established resident–provider relationships
are preserved through a binary affiliation akin to linkage analysis
in health networks [25]. For resident 𝑟 and candidate facility 𝑐:

𝑆cont (𝑟, 𝑐 ) =
{
1, if network(𝑟 ) = network(𝑐 ),
0, otherwise,

(17)

where network(·) returns the provider of the entity. For example,
if resident 𝑟 is associated with the “SunriseCare” network and 𝑐1
belongs to “SunriseCare,” then 𝑆cont (𝑟, 𝑐1) = 1. If 𝑐2 is part of a
different group, say “ElderHealth Partners,” then 𝑆cont (𝑟, 𝑐2) = 0.
This policy ensures that allocations maintain continuity of care by
favoring facilities within the same organizational partnership.

Social preference: We capture each social-preference attribute
𝑎 (e.g., pet-friendly facility, spouse accommodation, facility where
staff speak resident’s native language (language barrier)) as a binary
indicator 𝑆𝑎 (𝑟, 𝑐) ∈ {0, 1}, and aggregate them into a single score:

𝑆soc (𝑟, 𝑐 ) =
∑︁
𝑎∈A

𝑤𝑎 𝑆𝑎 (𝑟, 𝑐 ),
∑︁
𝑎

𝑤𝑎 = 1, (18)

whereA is the set of relevant social attributes and𝑤𝑎 their weights.
For example, 𝑆spouse (𝑟, 𝑐) = 1 if the spouse of resident 𝑟 can also be
accommodated at 𝑐 (0 otherwise), and 𝑆pet (𝑐) = 1 if 𝑐 allows pets (0
otherwise). Other attributes, such as facilities where staff speak the
resident’s native language, can be similarly defined and weighted.
For example, let A = {spouse, pet} with𝑤spouse = 0.6 and𝑤pet =
0.4. Consider a candidate facility 𝑐1 that can accommodate their
spouse, but it’s not pet-friendly. Hence,𝑆spouse = 1 and 𝑆pet = 0⇒
𝑆soc (𝑟, 𝑐1) = 0.6 · 1 + 0.4 · 0 = 0.6. On the other hand, 𝑐2 allows pets

but cannot accommodate their spouse. Thus 𝑆spouse = 0; 𝑆pet = 1
⇒ 𝑆soc (𝑟, 𝑐2) = 0.6 · 0 + 0.4 · 1 = 0.4. Therefore, 𝑐1 is preferred over
𝑐2 according to the resident’s social needs.

Finally, we incorporate penalties to evaluate non-preferred al-
locations. Suppose a resident has the preference list 𝐿(𝑟 ) = {𝑓2, 𝑓3,
𝑓1, 𝑓5, 𝑓4}. If 𝑟 is assigned to 𝑓2, the penalty incurred is 0; if as-
signed to 𝑓3, it is −1; if assigned to 𝑓1, it is −2; and so forth. These
penalties are used as feedback to trigger reassignment when cu-
mulative dissatisfaction exceeds a threshold, thereby steering the
matching process toward solutions that balance efficiency and fair-
ness [5, 7, 30, 63].

From a computational standpoint, incorporating resident-specific
constraints significantly increases the solution space. Our reduc-
tion from the NP-hard makespan scheduling problem shows that
even a simplified instance with personalized constraints remains
NP-hard [30]. Although traditional assignment and routing can
be solved in polynomial time, the combinatorial complexity from
resident preferences requires heuristics and approximation algo-
rithms to achieve feasible solutions. Despite the complexity, the
profound benefits, including significantly improved resident out-
comes, enhanced continuity of care, and a demonstrably fairer
allocation of resources, justify the adoption of this approach. Fur-
thermore, older adults are particularly vulnerable to a range of
negative consequences following disasters, such as heightened anx-
iety, depression, exacerbation of chronic health conditions, social
isolation, and even post-traumatic stress disorder [36]. Therefore,
by integrating resident-specific preferences and medical profiles,
we proactively address these vulnerabilities and mitigate the associ-
ated risks, leading to a more person-centered and effective disaster
response that promotes resident well-being and resilience.

As shown in §6, we use synthetic resident profiles in the wildfire
scenario (developed with domain experts) to capture older adults’
preferences, which we evaluate using penalties. By contrast, the
earthquake and water contamination case studies use aggregate,
facility-level representations (e.g., ER/ICU/GACH bed classes) to
enable scalable analysis since per-resident data were unavailable.

Figure 9: Dashboard with Integrated Medical Profiles

A.2 Additional Experiments and Visualization
The following additional results illustrate RADAR across different
disaster contexts, including spatiotemporal analyses of vendor ac-
cess for water re-supply and dashboard snapshots that demonstrate
situational awareness and coordination support.
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(a) 3-Facilities Impacted: Distance to Stores (b) 10-Facilities Impacted: Distance to Stores (c) 20-Facilities Impacted: Distance to Stores

(d) 3-Fac. Impacted: Travel Time to Stores (e) 10-Fac. Impacted: Travel Time to Stores (f) 20-Fac. Impacted: Travel Time to Stores

Figure 10: Distributions of vendor-access distances (top row) and travel times (bottom row) for water re-supply.

Figure 11: Dashboard of the Earthquake Drill Showing Surge Capacity.

Figure 12: Dashboard of Water Contamination Drill.
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